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“If I had more time, I would have written a shorter letter.”
~Mark Twain

1. Introduction
When using graphs to model real-world problems, the shortest path between two vertices is often a problem
a great interest. In particular, we are often interested in finding a path of minimum weight between vertices
in a directed graph with weighted edges. In this report, we will explore “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths” by Hart, Nilsson, and Raphael [2] which presents A∗, an algorithm
for solving this exact problem. Furthermore, the paper proves the correctness of the algorithm, and that a
more optimal algorithm cannot be found. In addition to reviewing the paper, we will also give an implemen-
tation of A∗ using the Python programming language and the NetworkX software package [1]. Now, without
further ado, it’s time to find some paths!

2. Paper Summary

2.1. Terms and Notations
Before we embark on our journey together, it is important to agree up our objects of study and how we will
talk about them. Throughout this report, let G be a directed graph on n vertices. We will denote an edge
from a vertex i to j as eij . Though we have seen weighted graphs in class, let us refresh ourselves on the
definition since it has been a while since we last encountered one.

Definition 2.1. G is weighted if each edge eij has an associated real number known as the cost, denoted
cij .

For our purposes, G will always be weighted. In particular, G will be a δ graph.

Definition 2.2. For a weighted graph G, if there exists a real number δ > 0 such that the cost of each edge
is greater than or equal to δ we say G is a δ graph.

In essence, a δ graph is just a graph where there is a positive lower bound on the cost of all edges.
Instead of the usual explicit specification of a G (e.g. G = (V,E)) we will be using a rather unorthodox

implicit specification of G which is composed of a set of source vertices S ⊂ V (G) and a successor operator
Γ defined on V (G) which, for a given vertex v, returns a set of pairs (i, ci) where each i is a neighbor of v
reachable via an “in” edge evi, and ci is the associated cost of that edge. Next, we can define what it means
for a vertex to be accessible via another vertex.

Definition 2.3. For a vertex v in G, let the subgraph Gv be implicitly defined with v as the single source
vertex and the usual Γ. Any vertex i in V (Gv) is said to be accessible from v.

An intuitive way to think of Gv explicitly is simply the connected component of G containing v.
As stated earlier, our goal is to find a path on minimum cost between two vertices in G. We will define

the cost of a path to be the sum of the costs of each edge in the path. A path from vertex a i to vertex j is
optimal if it minimum cost over all paths from i to j. We will denote this cost h(i, j).

Henceforth, we will only concern ourselves with Gs derived from some start vertex s. Within Gs, let
the set of vertices we hope to reach (some subset of V (Gs) \ {s}) be denoted as T and referred to as the
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goal vertices. For some vertex v in V (Gs) a given goal vertex t is a preferred goal vertex of v if h(v, t) has
minimum cost among all goal vertices. We denote this cost as simply h(v).

Now we have the language to state our goal a bit more precisely. We would like to create an admissible
algorithm that searches Gs to find an optimal path from some start vertex s to one of its preferred goal
vertices. We say an algorithm is admissible if it is guaranteed to find such a path for any δ graph. Such an
algorithm will work by repetitive application of Γ to generate parts of Gs on-demand. If Γ is applied to a
vertex, we say the algorithm has expanded that vertex.

2.2. Introducing... A∗
With that boatload of notation and setup out of the way, we are finally ready to discuss the star of the show.
We would like our algorithm to expand the least number of vertices possible when searching of an optimal
path. Ideally, we would only expand vertices along an optimal path, otherwise we’d be wasting computation
by barking up the wrong tree. To help us with this, we will define an evaluation function f̂ on the vertices
of Gs such that the vertex with the smallest value of f̂ is the vertex that should be expanded next. For now,
consider f̂ as a black box (proof by trust, if you will), as it is easier to discuss the specifics of it after we
have defined our algorithm.

With the evaluation function in mind, we have all the tools to define the algorithm A∗. Note that in the
following pseudocode, prefixing a line with # denotes a comment.

Algorithm 2.1 (Hart, Nilsson, and Raphael).

define A*(s, T )
Mark s as “open” and calculate f̂(s)
# This is an array indexed by the vertices of the graph that represents the predecessor to each

vertex in an optimal path.
let pred = []
# while True will do an infinite loop.
while True

let n = “open” vertex whose value of f̂ is minimal. Resolve ties arbitrarily but always in
favor of a vertices in T .

Mark n as “closed”.
if n ∈ T

Reconstruct an optimal path using pred starting with n and terminate.
let succs = Γ(n)
for v ∈ succs

pred[v] = n

Calculate f̂(v).
if v is not marked “closed” or f̂(v) is smaller than before

# Since Γ returns a vertex, cost pair, we must access only the first element to get the
vertex.

Mark v[0] as “open”.

2.3. The Evaluation Function
That algorithm is great and all, but we are missing one major component which is the heart of A∗, we need
to explicitly define the evaluation function f̂ . Let f(v) be the actual cost of an optimal path constrained to
go through a vertex v from s to a preferred goal vertex of v.

We can observe that f(s) = h(s) by definition. It is also easy to see that f(s) = f(v) for every vertex v
on an optimal path to a preferred goal vertex of s, and f(v) > f(s) for every v not on such a path. We can
decompose f(v) into the sum of two parts:

f(v) = g(v) + h(v) (1)

where g(v) is the actual cost of an optimal path from s to v, and h(v) is the same as before.
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Obviously, computing f for any given vertex is effectively the same as solving the problem at hand,
however we can use f̂ to estimate f . Specifically, we will take ˆf(v) to be:

f̂(v) = ĝ(v) + ĥ(v) (2)

where ĝ(v) and ĥ(v) estimate g(v) and h(v) respectively. For ĝ(v), we can use the smallest cost path from
s to v that the algorithm has found so far. This implies ĝ(v) ≥ g(v), which is exactly what we want for an
estimate, as we will never be misled by choosing a path which has a larger cost than we thought. In a sense,
this means we will only “overshoot” the total cost of the path.

Choosing a method to compute ĥ(v) is a bit trickier, as it is a heuristic function that will depend on
the problem we are modeling with our graph. Specifically, we will calculate ĥ(v) using information from
the problem domain, with the only constraint that ĥ(v) ≤ h(v) for every vertex v in V (Gs). That way, the
heuristic never overestimates the cost of a particular path which would give the potential for A∗ to return
an incorrect result.

A trivial example for a choice of ĥ would be that ĥ(v) = 0 for all vertices v in V (Gs). Since G is a δ
graph, this is a lower bound on h(v) for every v. However, this is not a very helpful choice as it gives no
indication of the cost from v to a preferred goal vertex, relying only on information we already know from
our search.

To show an example of a better choice of ĥ, assume G is modeling cities connected via highways, where
the cost of the edge eij is the distance of the highway connecting city i to city j. In this case, a good choice
for ĥ(v) would be the distance to travel from city v to our goal via private jet. We can call this the “Taylor
Swift distance” (see [4]). Since jets don’t have to worry about following laid out roads and can instead travel
in a straight line (the shortest path between two points in Euclidean space) to their destination, the “Taylor
Swift distance” will clearly be a lower bound on the actual distance traveled via highways. We shall revisit
ĥ later, as there is much more we can say about this function.

2.4. A∗ is Admissible
We will now prove the admissibility of A∗. Before we dive in however, we will need a lemma to help us out.

Lemma 2.1. For any nonclosed vertex v and for any optimal path P from s to v, there exists an open vertex
v′ on P such that ĝ(v′) = g(v′).

Imagine that A∗ is forming an optimal path from s to v. This lemma is essentially saying that sometime in
forming this path, there will be a vertex v we can choose for which ĝ(v) is exactly the value of g(v). This
lemma also allows us to state the following,

Corollary 2.1. Suppose ĥ(v) ≤ h(v) for all v and suppose A∗ has not terminated. Then, for any optimal
path P from s to any preferred goal vertex of s, there exists an open vertex v′ on P with f̂(v′) ≤ f(s).

In less formal terms, if the heuristic function is a lower bound on the actual cost of an optimal path from
each vertex to a preferred goal vertex, then f̂(v) serves as a lower bound for f(v) for all v on P . However,
f(v) = f(s) for all v on an optimal path, so the corollary follows.

Now, without getting any more sidetracked, we can prove the following:

Theorem 2.1. If ĥ(v) ≤ h(v) for all v, then A∗ is admissible.

Proof. The proof will be by contradiction. Assume that A∗ does not terminate by finding an optimal path
from s to a preferred goal vertex of s. There are three cases we must examine:

• Case I: A∗ does not terminate at a goal vertex.
The algorithm only terminates when at a goal vertex as can be seen in algorithm 2.1 due to the

only return statement being guarded with the condition n ∈ T . Therefore, this case can never occur.
• Case II: A∗ does not terminate.

Let t be a preferred goal vertex of s accessible within a finite number of steps along an optimal
path with cost f(s). Recall that A∗ operates on δ graphs, therefore f(s) is at least δM where M is
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the number of steps the algorithm takes. Therefore, for any vertex v farther than M steps away from
s, we can say

f̂(v) ≥ ĝ(v) ≥ g(v) > f(s) ≥ δM (3)

following from the definition of each function.
Now, consider a specific v further than M steps from from s. This vertex will never be expanded

by A∗, as corollary 2.1 states there will always be some open vertex v′ on an optimal path from s to t
with f̂(v′) ≤ f(s). Since f(s) < f̂(v) (as seen in (3)), the algorithm will expand v′ instead of v.

With those pesky vertices more than M steps away from s out of the way, we can focus on all
vertices accessible within M steps of s. Let the set of said vertices be χ(M). The only way A∗ could
not terminate at this point is the continued reopening of vertices in χ(M) (see the last if statement
in algorithm 2.1).

Clearly, any vertex v in χ(M) can only be reopened a finite number of times, as there is a finite
number of paths form s to t including only vertices in χ(M) that pass through v. Let ρ(M) be the
maximum number of times a particular vertex in χ(M) is reopened. Since the size of χ(M) is finite,
the maximum number of times vertices in χ(M) can be expanded is |χ(M)|ρ(M), this follows from the
multiplication principle of counting.

Since no vertices outside of χ(M) can be expanded, and the vertices in χ(M) will only be expanded
a finite number of times, A∗ must terminate.

• Case III: A∗ terminates with a path of non-minimum cost.
Suppose A∗ terminates at some goal vertex t on a non-minimum cost path. Since this path is

non-minimum cost, f̂(t) > f(s). However, by corollary 2.1 just before termination there existed an
open vertex v′ on an optimal path where

f̂(v′) ≤ f(s) < f̂(t).

Since f̂(v′) < f̂(t), A∗ would have selected v′ as opposed to t. Therefore, A∗ will never terminate
with a non-minimum cost path.

2.5. A∗ is Optimal
Before discussing the optimality of A∗, we must say a bit more about the about ĥ. Specifically, we will place
another restriction on ĥ called the consistency assumption. For any two vertices v and w:

h(v, w) + ĥ(w) ≥ ĥ(v) (4)

Effectively, this can be interpreted as saying that the estimate of the distance to some vertex v cannot be
any better than using the estimate to some other vertex combined w combined with the actual cost of an
optimal path from w to v. In other words. . . there is not point in trying to be clever and you should just use
ĥ(v).

Generally, the consistency assumption will be satisfied for most choices of ĥ. The main places we need to
be on the look out for it not being satisfied is when ĥ has some parameter that varies independently between
vertices (e.g. a random variable).

The consistency assumption allows us to say something interesting about f̂ as a whole.

Lemma 2.2. If the consistency assumption is satisfied, then ĝ(v) = g(v) for any vertex v closed by A∗.

As a consequence of this, A∗ never needs to reopen a closed vertex. This is because if we combine the
facts that ĝ(v) = g(v), h(v, w) + ĥ(w) ≥ ĥ(v) and ĥ(v) ≤ h(v) we can conclude that if v is expanded, the
optimal path to it has already been found. This means we can get rid of part of that pesky final if statement
provided the consistency assumption is satisfied.

Now, onwards to optimality! Let us denote the set of all subgraphs generated from repeated applications
of Γ starting with some vertex v as {Gv,θ} where θ indexes each subgraph and is in some index set Θ.
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Definition 2.4. Let ΘA
v be the index set used by some algorithm A at vertex v, and let ΘA∗

n be the
corresponding set for A∗. If ΘA∗

n ⊂ ΘA
n we say that A is no more informed than A∗

In a sense, this gives us a quantitative way to say that A uses no more information about the problem
than A∗. Using this, we can state a theorem about how exactly A∗ is optimal compared to other algorithms.
Theorem 2.2. Let A∗ be the set of all algorithms for which the consistency assumption is satisfied that act
identically to A∗ except that they resolve ties differently. Let A be an admissible algorithm no more informed
than the algorithms in A∗. Then for any δ graph Gs, there exists A∗ in A∗ such that every vertex expanded
by A is also expanded by A∗.

To be formal and precise, it is necessary to generalize A∗ to a set of algorithms for stating theorems and
proving things where ties matter, but for the purposes of our discussion we can choose our favorite A∗ in
A∗.

The above theorem states that A∗ is optimal in the sense that it expands the fewest number of vertices
required to find an optimal path among algorithms no more informed than it.

3. Implementation
As alluded to earlier, we can give an implementation of A∗ using the Python programming language and
the NetworkX software package. All of the source code for the implementation along with the source files for
this paper can be found at [3].

NetworkX has a class for directed graphs that we can use. We can attach a weight to each edge, and a
heuristic field that we can use to attach a value of ĥ to each vertex. In terms of choosing a vertex for
which f̂ is minimal, we can sort the open vertices using a priority queue data structure where vertices with
smaller values of f̂ are further forward in the queue. For storing the predecessor of each vertex, a dictionary
data structure can be used.

Minimal concern is given to tie breaking in this implementation as we are only operating on graphs which
will expand few vertices in the case of a tie. If we wanted to implement the algorithm exactly, a custom
implementation of a priority queue which breaks ties correctly may be required.

The implementation at [3] also has the capability of producing animations of the algorithm being run,
but we will exclude that piece from our discussion here for the sake of brevity.

4. Conclusion
With that, we have reached the end our journey together through [2]! Just to recap, we sought to develop an
algorithm that would find a minimum-cost path through a directed, weighted graph. Using information from
the problem domain known as the heuristic, the A∗ algorithm is not only correct but the best algorithm
possible unless you use more information than the chosen heuristic exudes. We also reviewed some of
the design choices that went into an implementation of A∗ using the Python programming language and
NetworkX software package.
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